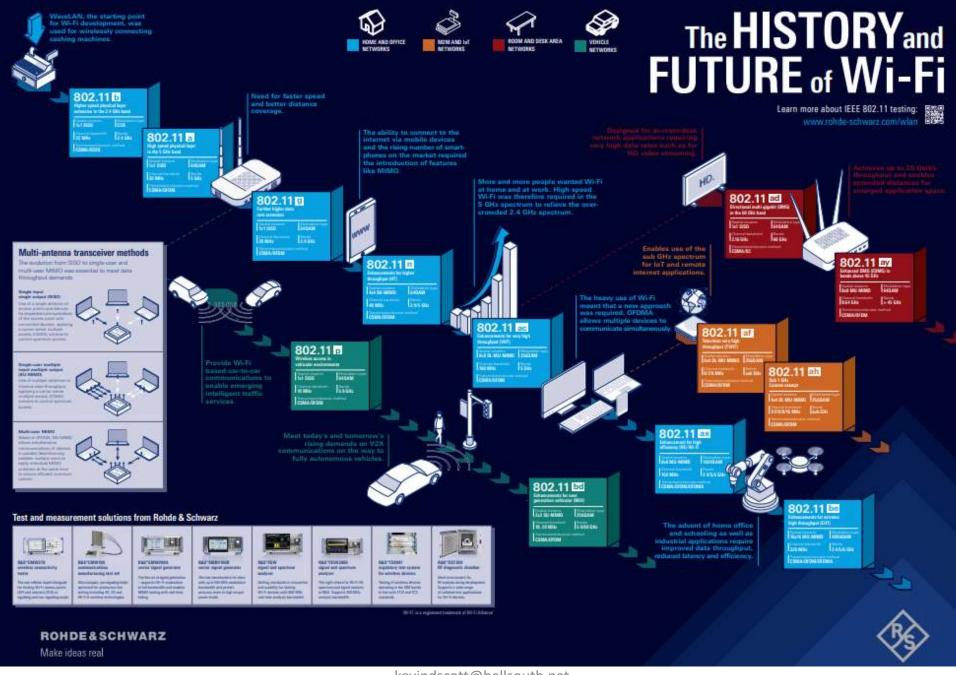
Wi-Fi for Hams

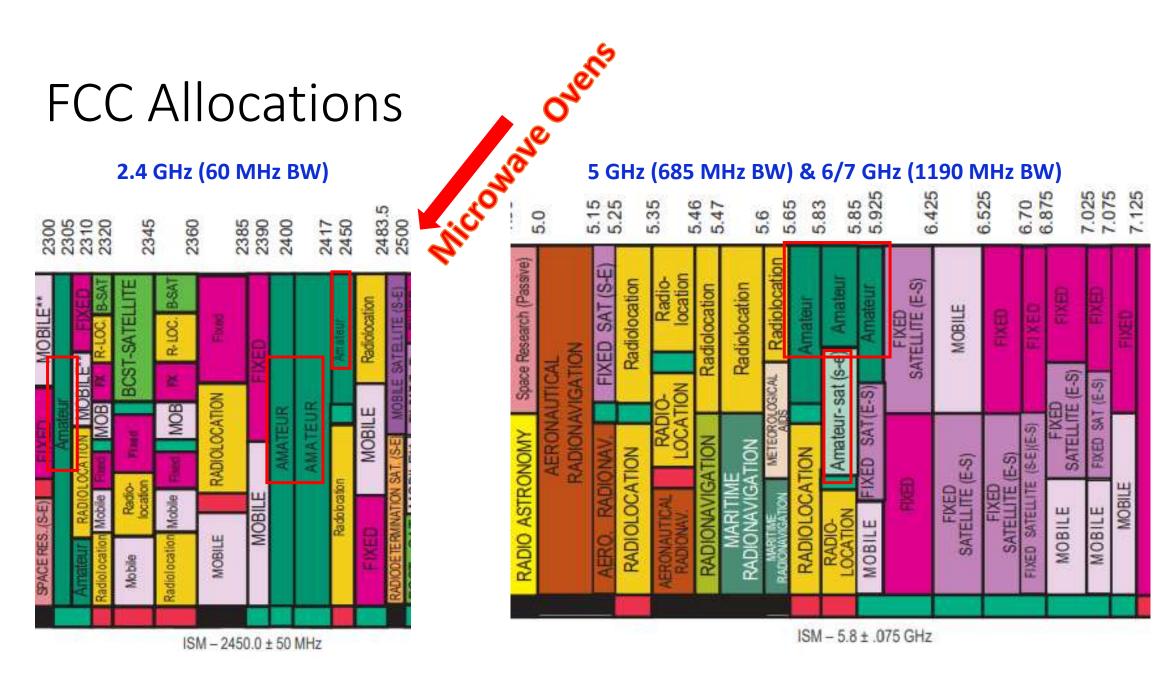

A Practical Explanation

Kevin Scott K4GTR kevindscott@bellsouth.net

History of Wi-Fi

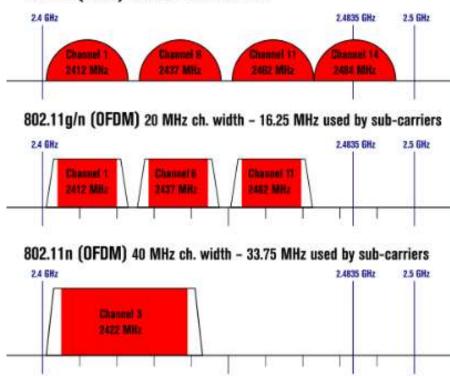
- Wi-Fi was a pun on "Hi-Fi" and not short for "Wireless Fidelity"
- WaveLAN, created by NCR and AT&T to link cash registers was the precursor for Wi-Fi.
- Wi-Fi was formalized as 802.11 by the IEEE (Institute of Electrical and Electronics Engineers)
 - To fulfill the need for high-speed data communications as an extension of the Ethernet (10/100/1000+ Mbps) protocol through wireless technologies instead
 - For portable, mobile and fixed remote applications
- All Wi-Fi IEEE specifications fall into the 802.11 standards family
 - Compare to FCC Part 97 rules for the Radio Amateur Service
- Wi-Fi certification of products is performed by The Wi-Fi Alliance (www.wi-fi.org)
 - It is a worldwide network of companies that provide Wi-Fi and related equipment
 - Look for this logo on officially certified Wi-Fi devices and equipment

Acronyms and Definitions

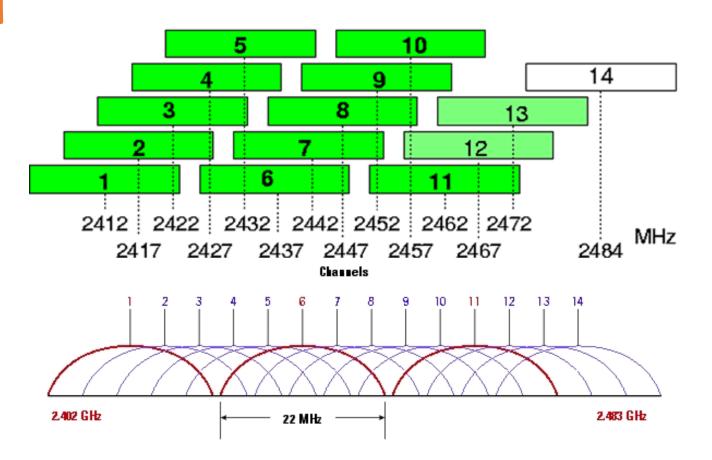

- Spatial Streams
 - A method to use various polarizations and antenna diversity to achieve higher throughput than if using a single frequency/single stream. Common number of streams in current products are 2, 3 & 4 streams and 8, 8+8 and 16 streams for new and future products
- MCS Modulation and Coding Scheme
 - Defines spatial streams and data rate
- RSSI Receive Signal Strength Indicator
- Modulation Types:
 - CCK Complementary Code Keying
 - DSSS Direct Sequence Spread Spectrum
 - BPSK Binary Phase Shift Keying
 - QAM Quadrature Amplitude Modulation
 - OFDM Orthogonal Frequency-Division Multiplexing
 - OFDMA Orthogonal Frequency-Division Multiple Access
 - Allows multiple users due to sub-carriers

Acronyms and Definitions continued

- AP Access Point (this is your home's Wi-Fi router)
- SISO Single Input/Single Output (single transmission stream)
- SU-MIMO Single User Multiple Input/Multiple Output
- DL-MU-MIMO Download Multiple User MIMO
- RU Resource Units (smaller frequency allocations for each user on a full Wi-Fi channel)
- U-NII Unlicensed National Information Infrastructure radio band
- ISM Industrial, Scientific and Medical; refers to unlicensed bands
- DFS Dynamic Frequency Selection (listen for RADAR before use)
 - Used on U-NII-2 and 2e sub-bands
- CSMA Carrier Sense Multiple Access/Collision Avoidance
- BER Bit Error Rate

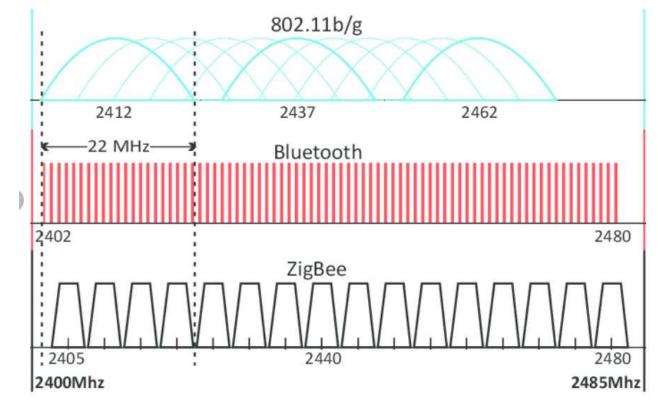

Wi-Fi Throughput Speeds

- Important Note: The maximum network speeds are controlled by:
 - Incoming data rate from your Internet Service Provider (ISP) The "Outside" World
 - The Wi-Fi generation of your wireless router
 - The capability of your device's Wi-Fi network card or IC
 - 2.4/5 GHz
 - 20/40/80/160 MHz channels
 - The number of spatial streams
 - Distance from your Wi-Fi router
 - MCS level
 - MCS0 is slowest
 - MCS7, 8, 9 or 11 is the fastest

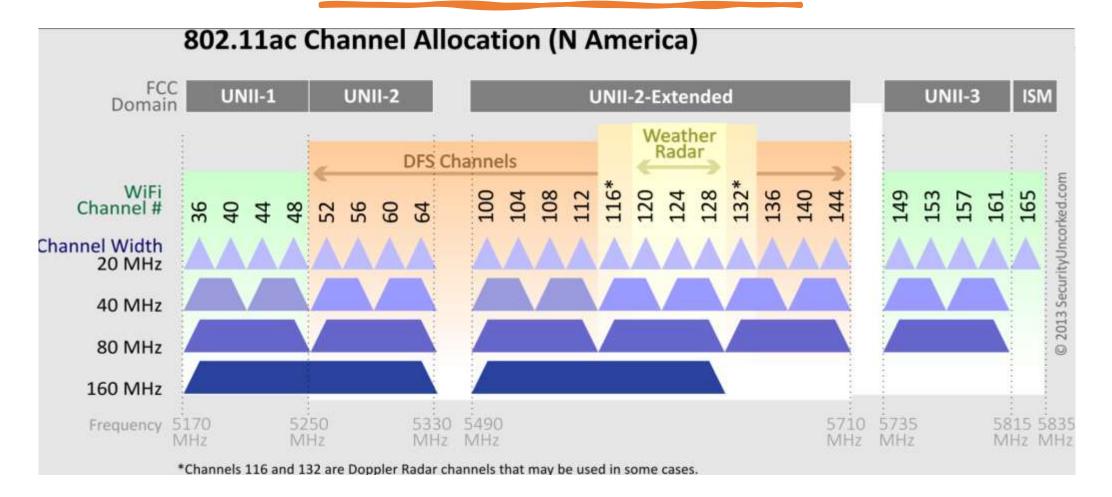


2.4 GHz Channels

Non-Overlapping Channels for 2.4 GHz WLAN 802.11b (DSSS) channel width 22 MHz



- Note that you can only have THREE nonoverlapping channels
 - Most commonly used channels are 1, 6 and 11


2.4 GHz is CROWDED

- Wi-Fi channels
- IoT (Internet of Things) devices
- Bluetooth
 - "Classic" (Seventy-nine 1 MHz channels)
 - "BLE" Bluetooth Low Energy (Forty 2 MHz channels)
- Microwave ovens ~2.5 GHz

802.11, Bluetooth and ZigBee Channels in the 2.4 GHz ISM Band

Current 5 GHz Channels

802.11b/a/b Definitions

802.11 D

Higher speed physical layer extension in the 2.4 GHz band

Modulation

ССК

Bands

2.4 GHz

Spatial streams 1x1 SISO

Channel bandwith 22 MHz

Transmission/access method CSMA/DSSS

802.11 a

High speed physical layer in the 5 GHz band

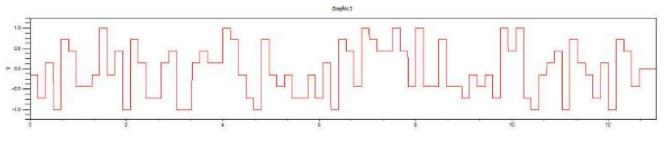
Spatial streams 1x1 SIS0 Modulation

Channel bandwith 20 MHz Bands

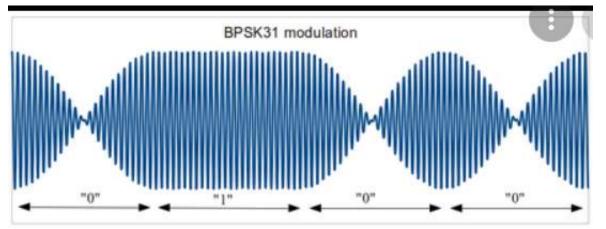
Transmission/access method CSMA/OFDM

802.11 g Further higher data rate extension

Spatial streams 1x1 SIS0 Modulatio

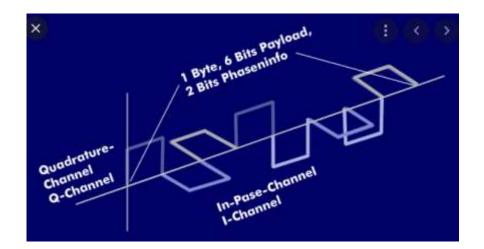

Channel bandwith 20 MHz

Bands 2.4 GHz

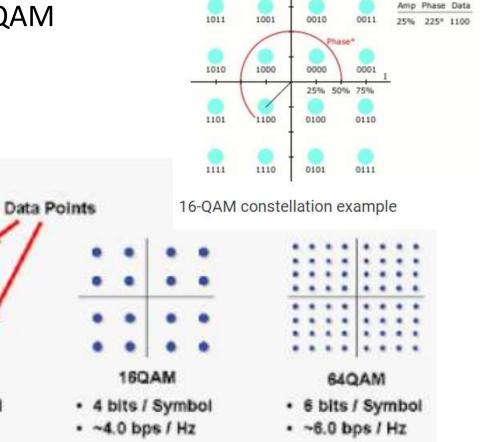

Transmission/access method CSMA/OFDM

FT8 and PSK31 Modulation (as a comparison)

• FT8 (8-GFSK, Eight-State Gaussian Frequency Shift Keying)

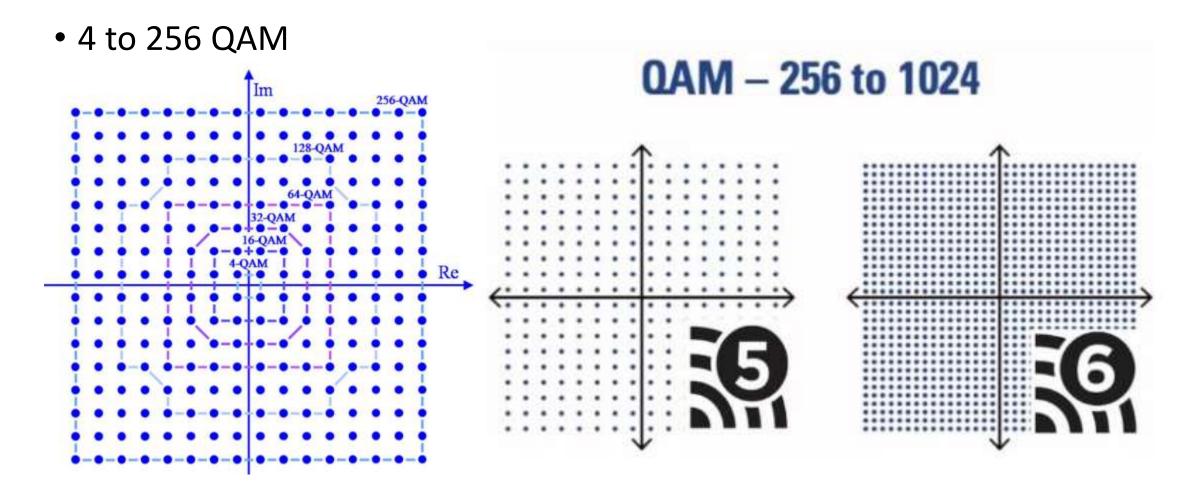


• PSK31 (Phase-Shift Keying)


Earlier Wi-Fi Modulation Types (b/a/g/n)

• CCK

00


01

QPSK

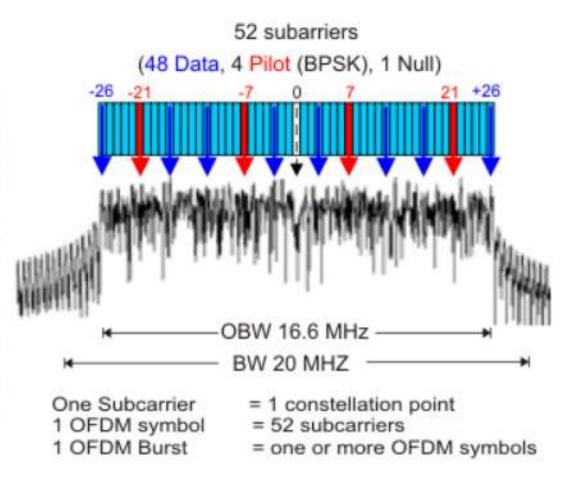
2 bits / Symbol

~2.0 bps / Hz

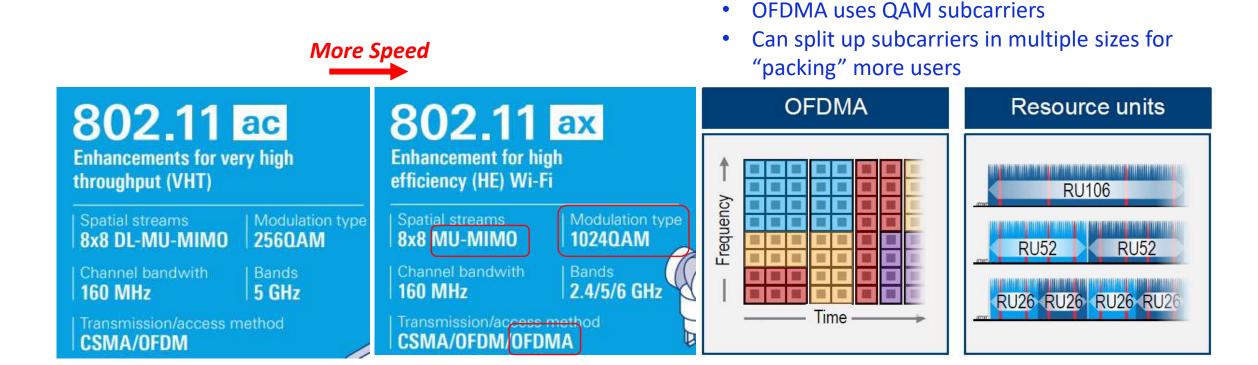
QAM Constellations

802.11n = Wi-Fi 4

- Key Improvements
 - Multiple special streams
 - Wider bandwidth
 - 2.4 GHz 40 MHz
 - 5 GHz 40 MHz


802.11 n Enhancements for higher throughput (HT) Spatial streams Modulation type 4x4 SU-MIMO 640AM Channel bandwith Bands 40 MHz 2.4/5 GHz Transmission/access method CSMA/OFDM

802.11n/ac/ax – Wi-Fi 4 to Wi-Fi 6


Improvements			
shown by arrows	Wi-Fi 4 (802.11n) High Throughput (HT)	Wi-Fi 5 (802.11ac) Very High Throughput (VHT)	Wi-Fi 6 (802.11ax) High Efficiency (HE)
Supported bands	2 GHz, 5 GHz	5 GHz	2 GHz, 5 GHz
Channel bandwidth (MHz)	20, 40	> 20, 40, 80, 80+80, 160	20, 40, 80, 80+80, 160
Transmission scheme	OFDM	OFDM	OFDM, OFDMA
Subcarrier spacing	312.5 kHz	312.5 kHz	78.125 kHz
Guard interval	0.4 µs, 0.8 µs	0.4 µs, 0.8 µs	0.8 μs, 1. <mark>6 μs, 3.2 μs</mark>
Spatial streams	4x4 (SU-MIMO only)	>8x8 (incl. DL-MU-MIMO)	8x8 (incl. MU-MIMO)
Modulation (highest)	64QAM	> 256QAM	• 1024QAM
Max. data rate*	540 Mbps	► 6 934 Mbps	▶ 9 765 Mbps

OFDM Modulation (a/g/n/ac – Wi-Fi 4/5)

802.11a OFDM PHY Parameters						
BW	20 MHZ					
OBW	16.6 MHZ					
Subcarrer Spacing	312.5 Khz (20MHz/64 Pt FFT)					
Information Rate	6/9/12/18/24/36/48/54 Mbits/s					
Modulation	BPSK, QPSK, 16QAM, 64QAM					
Coding Rate	1/2, 2/3, 3/4					
Total Subcarriers	52 (Freq Index -26 to +26)					
Data Subcarriers	48					
Pilot Subcarriers*	4 (-21, -7, +7, +21) *Always BPSK					
DC Subcarrier	Null (0 subcarrier)					

OFDMA Modulation (ax - Wi-Fi 6)

MCS Tables

- Lists the potential maximum data rate based on:
 - Number of Spatial Streams
 - Horizontal polarization
 - Vertical polarization
 - Orthogonal polarization
 - Spatial diversity
 - This is more pronounced as the wavelength gets shorter/frequency higher
 - MCS Level
 - This changes based on bit error rate
 - Affected by distance from AP

802.11ax MCS Table

												MU-OFDMA	(602.11ax)								
MCS	MCS Spatial Modulation Coding		Codina	26-tone RU			52-tone RU		1	106-tone RU		242-tone RU		484-tone RU			996-tone RU				
Index	Stream	Modulation	coding	0.8µs Gl	1.6µs GI	3.2µs Gl	0.8µs Gl	1.6µs Gl	3.2µs Gl	0.8µs Gl	1.6µs GI	3.2µs Gl	0.8µs GI	1.6µs Gl	3.2µs Gl	0.8µs Gl	1.6µs Gl	3.2µs Gl	0.8µs GI	1.6µs Gl	3.2µs GI
0	1	BPSQ	1/2	0.9	0.8	0.8	1.8	1.7	1,5	3.8	3.5	3.2	8.6	8.1	7.3	17.2	16.3	14.6	36.0	34.0	30.6
1	1	QPSK	1/2	1.8	1.7	1.5	3.5	3.3	3.0	7.5	7.1	6.4	17.2	16.3	14.6	34.4	32.5	29.3	72.1	68.1	61.3
2	1	QPSK	3/4	2.6	2.5	2.3	5.3	5.0	4.5	11.3	10.6	9.6	25.8	24.4	21.9	51.6	48.8	43.9	108.1	102.1	91.9
3	1	16-QAM	1/2	3.5	3.3	3.0	7.1	6.7	6.0	15.0	14.2	12.8	34.4	32.5	29.3	68.8	65.0	58.5	144.1	136.1	122.5
4	1	16-QAM	3/4	5.3	5.0	4.5	10.6	10.0	9.0	22.5	21.3	19.1	51.6	48.8	43.9	103.2	97.5	87.8	216.2	204.2	183.8
5	1	64-QAM	2/3	7.1	6.7	6.0	14.1	13.3	12.0	30.0	28.3	25.5	68.8	65.0	58.5	137.6	130.0	117.0	288.2	272.2	245.0
6	1	64-QAM	3/4	7.9	7.5	6.8	15.9	15.0	13.5	33.8	31.9	28.7	77.4	73.1	65.8	154.9	146.3	131.6	324.3	306.3	275.6
7	1	64-QAM	5/6	8.8	8.3	7.5	17.6	16.7	15.0	37.5	35.4	31.9	86.0	81.3	73.1	172.1	162.5	146.3	360.3	340.3	306.3
8	1	256-QAM	3/4	10.6	10.0	9.0	21.2	20.0	18.0	45.0	42.5	38.3	103.2	97.5	87.8	206.5	195.0	175.5	432.4	408.3	367.5
9	1	256-QAM	5/6	11.8	11.1	10.0	23.5	22.2	20.0	50.0	47.2	42.5	114.7	108.3	97.5	229.4	216.7	195.0	480.4	453.7	408.3
10	1	1024-QAM	3/4	13.2	12.5	11.3	26.5	25.0	22.5	56.3	53.1	47.8	129.0	121.9	109.7	258.1	243.8	219.4	540.4	510.4	459.4
11	1	1024-QAM	5/6	14.7	13.9	12.5	29.4	27.8	25.0	62.5	59.0	53.1	143.4	135.4	121.9	286.8	270.8	243.8	600.5	567.1	510.4
0	2	BPSQ	1/2	1.8	1.7	1.5	3.5	3.3	3.0	7.5	7.1	6.4	17.2	16.3	14.6	34.4	32.5	29.3	72.1	68.1	61.3
1	2	QPSK	1/2	3.5	3.3	3.0	7.1	6.7	6.0	15.0	14.2	12.8	34.4	32.5	29.3	68.8	65.0	58.5	144.1	136.1	122.5
2	2	QPSK	3/4	5.3	5.0	4.5	10.6	10.0	9.0	22.5	21.3	19.1	51.6	48.8	43.9	103.2	97.5	87.8	216.2	204.2	183.8
3	2	16-QAM	1/2	7.1	6.7	6.0	14.1	13.3	12.0	30.0	28.3	25.5	68.8	65.0	58.5	137.6	130.0	117.0	288.2	272.2	245.0
- 4	2	16-QAM	3/4	10.6	10.0	9.0	21.2	20.0	18.0	45.0	42.5	38.3	103.2	97.5	87.8	206.5	195.0	175.5	432.4	408.3	367.5
5	2	64-QAM	2/3	14.1	13.3	12.0	28.2	26.7	24.0	60.0	56.7	51.0	137.6	130.0	117.0	275.3	260.0	234.0	576.5	544.4	490.0
6	2	64-QAM	3/4	15.9	15.0	13.5	31.8	30.0	27.0	67.5	63.8	57.4	154.9	146.3	131.6	309.7	292.5	263.3	648.5	612.5	551.3
7	2	64-QAM	5/6	17.6	16.7	15.0	35.3	33.3	30.0	75.0	70.8	63.8	172.1	162.5	146.3	344.1	325.0	292.5	720.6	680.6	612.5
8	2	256-QAM	3/4	21.2	20.0	18.0	42.4	40.0	36.0	90.0	85.0	76.5	206.5	195.0	175.5	412.9	390.0	351.0	864.7	816.7	735.0
9	2	256-QAM	5/6	23.5	22.2	20.0	47.1	44.4	40.0	100.0	94.4	85.0	229.4	216.7	195.0	458.8	433.3	390.0	960.8	907.4	816.7
10	2	1024-QAM	3/4	26.5	25.0	22.5	52.9	50.0	45.0	112.5	106.3	95.6	258.1	243.8	219.4	516.2	487.5	438.8	1080.9	1020.8	918.8
11	2	1024-QAM	5/6	29.4	27.8	25.0	58.8	55.6	50.0	125.0	118.1	106.3	286.8	270.8	243.8	573.5	541.7	487.5	1201.0	1134.3	1020.8
0	3	BPSQ	1/2	2.6	2.5	2.3	5.3	5.0	4.5	11.3	10.6	9.6	25.8	24.4	21.9	51.6	48.8	43.9	108.1	102.1	91.9
1	3	QPSK	1/2	5.3	5.0	4.5	10.6	10.0	9.0	22.5	21.3	19.1	51.6	48.8	43.9	103.2	97.5	87.8	216.2	204.2	183.8
2	3	QPSK	3/4	7.9	7.5	6.8	15.9	15.0	13.5	33.8	31.9	28.7	77.4	73.1	65.8	154.9	146.3	131.6	324.3	306.3	275.6
3	3	16-QAM	1/2	10.6	10.0	9.0	21.2	20.0	18.0	45.0	42.5	38.3	103.2	97.5	87.8	206.5	195.0	175.5	432.4	408.3	367.5
4	3	16-QAM	3/4	15.9	15.0	13.5	31.8	30.0	27.0	67.5	63.8	57.4	154.9	146.3	131.6	309.7	292.5	263.3	648.5	612.5	551.3
5	3	64-QAM	2/3	21.2	20.0	18.0	42.4	40.0	36.0	90.0	85.0	76.5	206.5	195.0	175.5	412.9	390.0	351.0	864.7	816.7	735.0
6	3	64-QAM	3/4	23.8	22.5	20.3	47.6	45.0	40.5	101.3	95.6	86.1	232.3	219.4	197.4	464.6	438.8	394.9	972.8	918.8	826.9
7	3	64-QAM	5/6	26.5	25.0	22.5	52.9	50.0	45.0	112.5	106.3	95.6	258.1	243.8	219.4	516.2	487.5	438.8	1080.9	1020.8	918.8
8	3	256-QAM	3/4	31.8	30.0	27.0	63.5	60.0	54.0	135.0	127.5	114.8	309.7	292.5	263.3	619.4	585.0	526.5	1297.1	1225.0	1102.5
9	3	256-QAM	5/6	35.3	33.3	30.0	70.6	66.7	60.0	150.0	141.7	127.5	344.1	325.0	292.5	688.2	650.0	585.0	1441.2	1361.1	1225.0
10	3	1024-QAM	3/4	39.7	37.5	33.8	79.4	75.0	67.5	168.8	159.4	143.4	387.1	365.6	329.1	774.3	731.3	658.1	1621.3	1531.3	1378.1
11	3	1024-QAM	5/6	44.1	41.7	37.5	88.2	83.3	75.0	187.5	177.1	159.4	430.1	406.3	365.6	860.3	812.5	731.3	1801.5	1701.4	1531.3

Zoomed MCS Table 11ax Three Streams

MCS	Spatial	Madulation	Codina		80MHz		160MHz				
Index	Stream	Modulation	Coding	0.8µs GI	1.6µs GI	3.2µs Gl	0.8µs Gl	1.6µs GI	3.2µs GI		
0	3	BPSQ	1/2	108.1	102.1	91.9	216.2	204.2	183.8		
1	3	QPSK	1/2	216.2	204.2	183.8	432.4	408.3	367.5		
2	3	QPSK	3/4	324.3	306.3	275.6	648.5	612.5	551.3		
3	3	16-QAM	1/2	432.4	408.3	367.5	864.7	816.7	735.0		
4	3	16-QAM	3/4	648.5	612.5	551.3	1297.1	1225.0	1102.5		
5	3	64-QAM	2/3	864.7	816.7	735.0	1729.4	1633.3	1470.0		
6	3	64-QAM	3/4	972.8	918.8	826.9	1945.6	1837.5	1653.8		
7	3	64-QAM	5/6	1080.9	1020.8	918.8	2161.8	2041.7	1837.5		
8	3	256-QAM	3/4	1297.1	1225.0	1102.5	2594.1	2450.0	2205.0		
9	3	256-QAM	5/6	1441.2	1361.1	1225.0	2882.4	2722.2	2450.0		
10	3	1024-QAM	3/4	1621.3	1531.3	1378.1	3242.6	3062.5	2756.3		
11	3	1024-QAM	5/6	1801.5	1701.4	1531.3	3602.9	3402.8	3062.5		

Mbps

Zoomed MCS Table 11ax Eight Streams/160 MHz Channel

MC	MCS Index		Spatial	Modulatio			160MHz				
ΗT	VH T	HE	Spatial Stream	n	Coding		0.8µs Gl	1.6µs Gl	3.2µs Gl		
	0	0	8	BPSK	1/2		576.5	544.4	490		
	1	1	8	QPSK	1/2		1152.9	1088.9	980		
	2	2	8	QPSK	3/4		1729.4	1633.3	1470		
	3	3	8	16-QAM	1/2		2305.9	2177.8	1960		
	4	4	8	16-QAM	3/4		3458.8	3266.7	2940		
	5	5	8	64-QAM	2/3		4611.8	4355.6	3920		
	6	6	8	64-QAM	3/4		5188.2	4900	4410		
	7	7	8	64-QAM	5/6		5764.7	5444.4	4900		
	8	8	8	256-QAM	3/4		6917.6	6533.3	5880		
	9	9	8	256-QAM	5/6		7686.3	7259.3	6533.3		
		10	8	1024-QAM	3/4		8647.1	8166.7	7350		
		11	8	1024-QAM	5/6		9607.8	9074.1	8166.7		

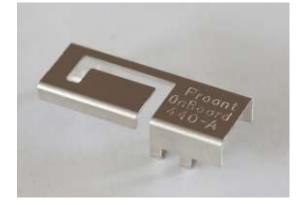
22

Mbps

Propagation of 2.4/5/6 GHz

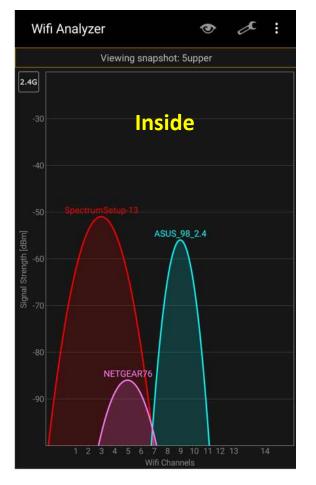
- Just like on VHF and UHF, the lower the frequency, the better the range in free space
- At microwave frequencies, building materials, water vapor and content, etc. all affect propagation to a larger effect especially as you go higher in frequency
- Sources of RF noise at lower frequencies do not affect microwave frequencies to the same degree
 - Lightning
 - Harmonic content of appliances, lights, power supplies, etc.
- Distance from the transceiver still applies

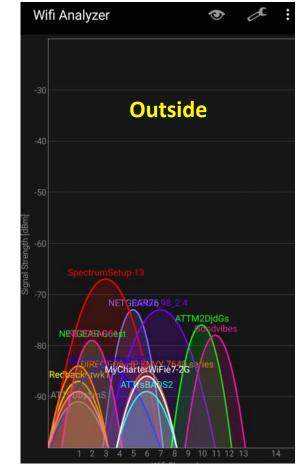
Power Tables 2.4 and 5 GHz


- Wi-Fi devices are rated mostly in terms of "dBm"
- 2.4 GHz
 - Max EIRP 36 dBm (4 watts)
 - If the antenna gain is increased for more directional range, the transmitter power must be reduced accordingly
- 5 GHz
 - Max EIRP 30 dBm (1 watt)
 - U-NII sub-bands have lower power specifications and are based on a special formula.
- Refer to these tables for more details: <u>https://www.air802.com/fcc-</u> <u>rules-and-regulations.html</u>

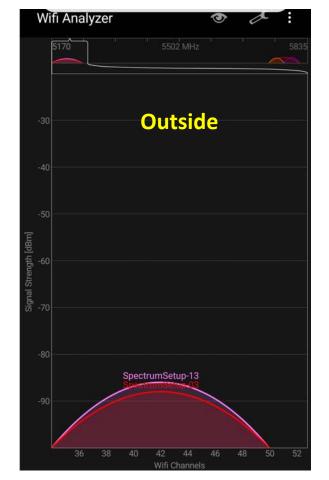
Antenna Types

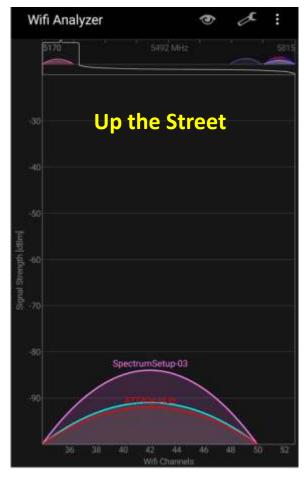
- On-board antennas with 0 dBi gain or less (for more of an omni pattern)
- Quarter-wave monopole with a ground plane reference (0 to 2.19dBi gain)
- Coaxial dipole (2.19 dBi)
- Colinear (5 to 8 dBi)
- Panel (10 20 dBi)
 - Indoor
 - Outdoor for Enterprise APs
- Most products use designs that cannot be replaced by the end user





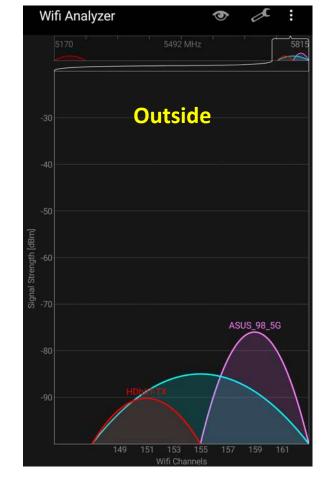
Cool Tools — Wi-Fi Analyzer App (Android) 2.4 GHz

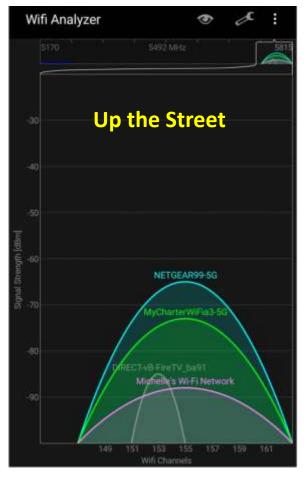




kevindscott@bellsouth.net

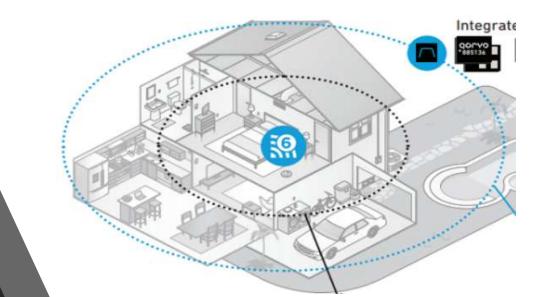
Cool Tools – Wi-Fi Analyzer App (Android) 5 GHz (lower band)


Wi	fi Analyzer		9	x	:
	Viewi	ing snapshot: 5	upper		
5G	5170	15492 MHa			5815
:30		Inside	2		
-40					
:50 TE					_
Signal Strength (dBm) 20	SF	bectrumSetup-13			_
Signal 26			\backslash		
-80					
-90					1
	36 38 4	40 42 44 Will Channe		48 50	52



Cool Tools — Wi-Fi Analyzer App (Android) 5 GHz (upper band)

	Wifi Analyzer	
	Vie	wing snapshot: 5upper
	5170	5492 MHz 5593
		Inside
	-40	
		ASUS_98_5G
Signal Strength [dBm]	-60	
	-80	HDbitT-TX
	-90	
	149	9 151 153 155 157 159 161 Wifi Channels


Mesh Networks and Wi-Fi Extenders

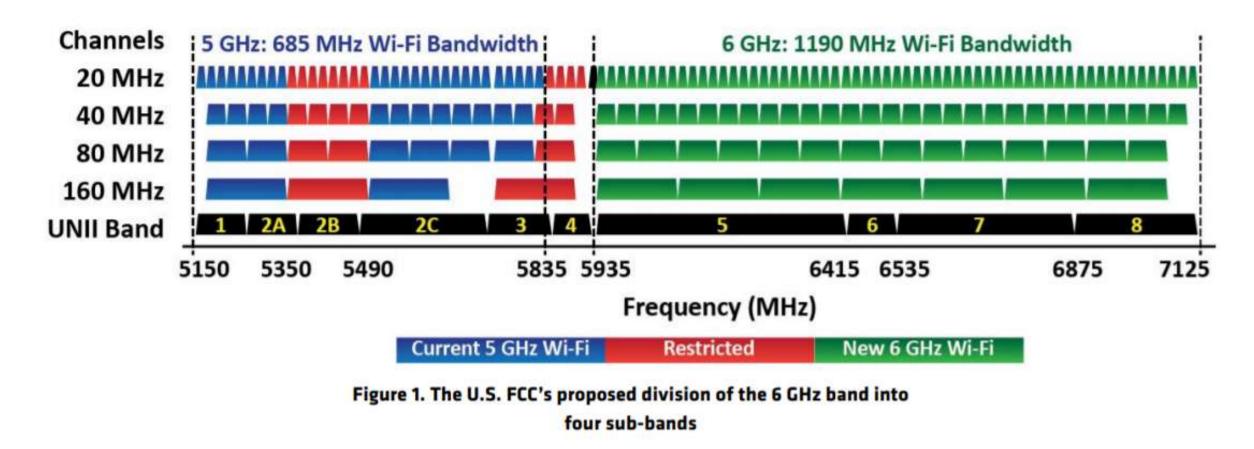
- These are designed to solve one problem: bad signal strength
- Mesh networks typically slow down your throughput speed as they "store and forward" data from one AP to the next
- Some Wi-Fi Extenders can also slow down throughput by
 - Use of 20 MHz channels vs 40/80 MHz
 - Operate only on 2.4 GHz, a crowded band
 - Operate as "half duplex" devices
- For best throughput, use a Wi-Fi Extender that uses an un-used and dedicated 5 GHz channel to continuously stream DUPLEX data (such as a DFS channel in the U-NII2 band)
- See this article for really good information on this topic: <u>https://www.pcmag.com/how-to/wi-fi-range-extender-vs-mesh-network-whats-the-difference</u>

Optimizing Wi-Fi Throughput in your House

• Place in a central location in your house

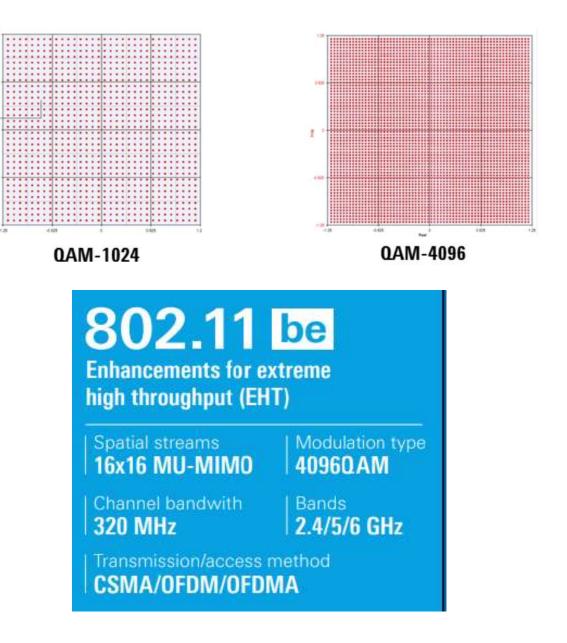
- Not a corner of your house
 - Better to run a longer Ethernet cable to your router to get to a better location
- Avoid nearby metal objects
 - Mirrors
 - Steel wall studs
 - Refrigerator, etc.
 - Not behind your big screen TV
- Off of the floor
- Not in your attic
 - The devices are typically rated for operation below 40 degree C. Extended exposure to the high heat in an attic will reduce the operation life of your Wi-Fi AP
- For better coverage, use two AP's connected via an Ethernet cable and programmed to non-interfering channels

What's next?

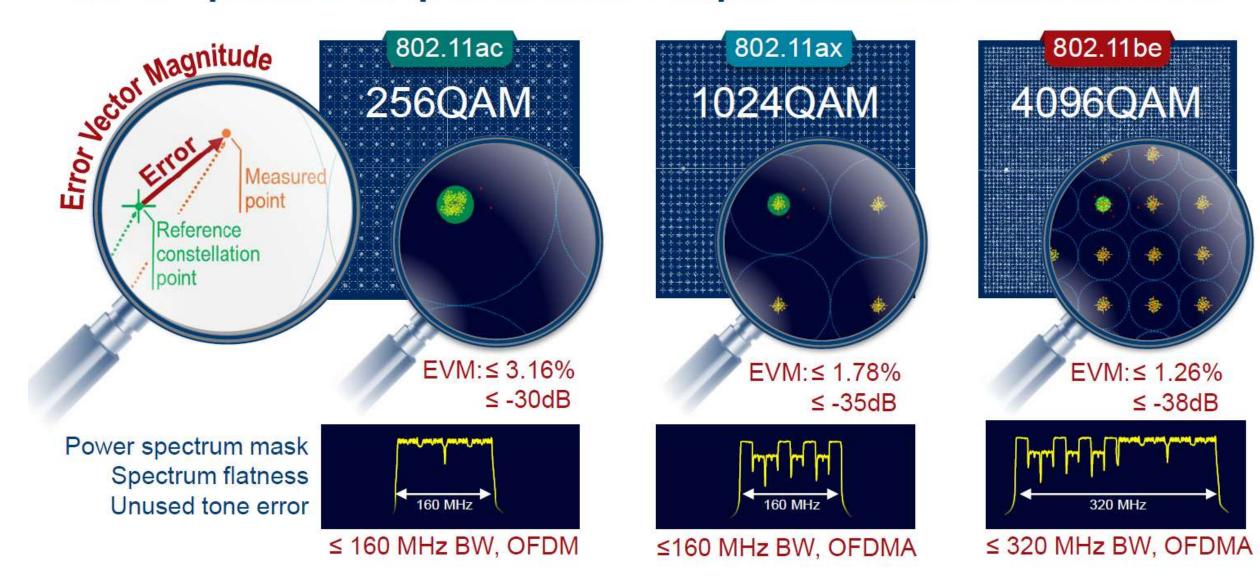

Wi-Fi 6e

In the US, there will be nearly 1200 MHz of new spectrum

 Canada & Mexico are following this same bandwidth plan

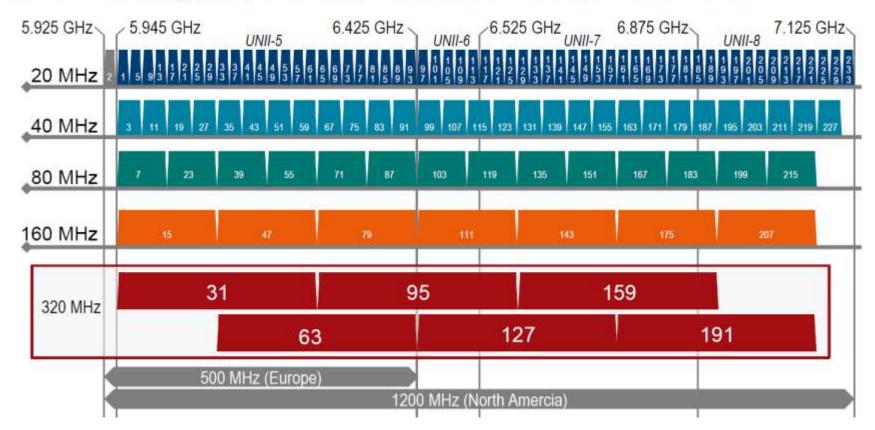

Includes SEVEN consecutive 160 MHz channels for high-speed capability. These are not overlapped channels

5 & 6 GHz Channels up to 7.125 GHz

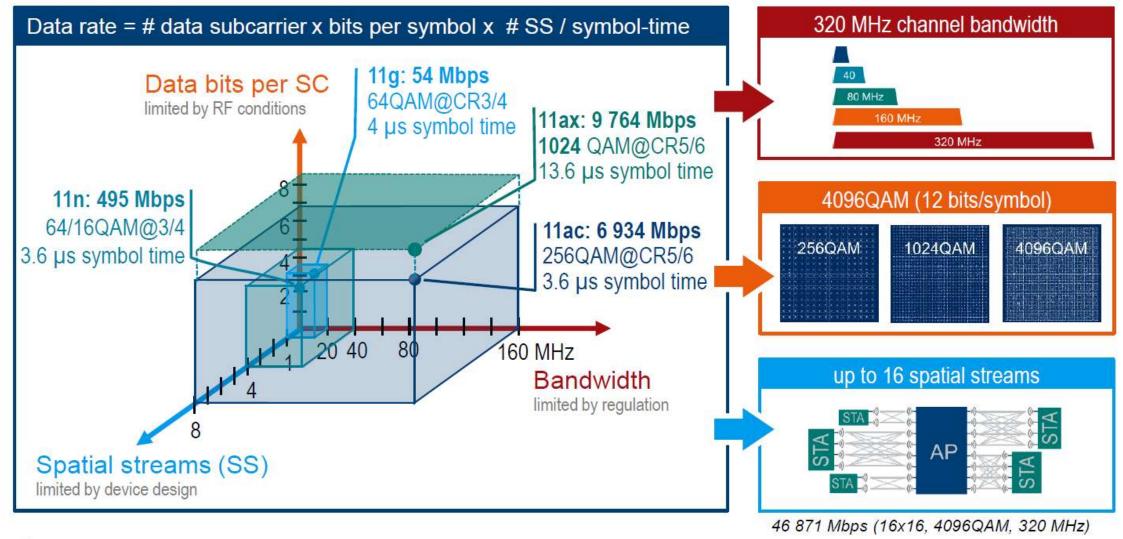


802.11be – Wi-Fi 7

- 320 MHz Channels
- Faster Modulation 4096 QAM
 - Compare constellations as shown

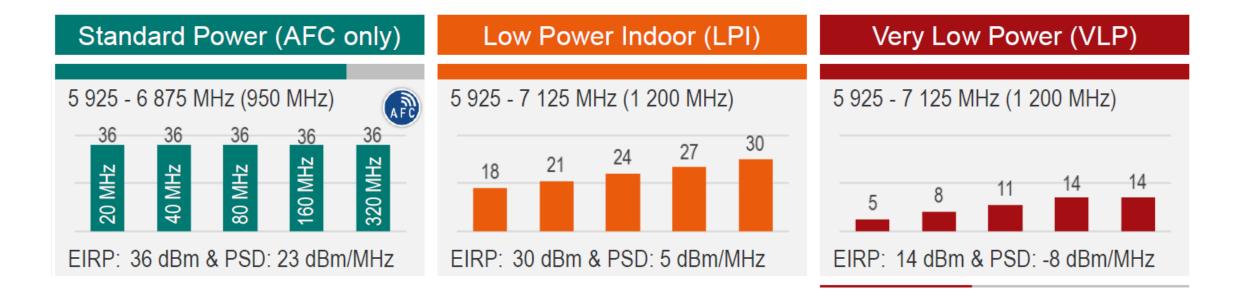


Wi-Fi 7 pushes RF performance requirements to the next level



320 MHz Channels

A few overlapping 320 MHz channels in the 6 GHz band


The everlasting demand for higher data rates and its limitations

6 GHz Power Tables

- For Outdoor AP's must use frequency coordination called AFC
- Other AP types use PSD (Power Spectral Density) formulas to determine EIRP power limits

References

- MCS Table (HT/VHT/HE) Google Drive
- U.S. Frequency Allocation Chart (doc.gov)
- <u>© Rohde & Schwarz; The history and future of Wi-Fi (rohde-schwarz.com)</u>
- <u>https://www.skyworksinc.com/-/media/SkyWorks/Documents/Articles/Next-Generation-WiFi.pdf</u>
- <u>https://www.extremetech.com/computing/184685-what-is-802-11ax-wifi-and-do-you-really-need-a-10gbps-connection-to-your-laptop</u>
- <u>https://jeremyclark.ca/wp/telecom/wsjt-x-ft8-modulator-scicos-simulation/</u>
- <u>https://rfmw.em.keysight.com/wireless/helpfiles/89600b/webhelp/subsystems/wlan-ofdm/content/ofdm_80211-overview.htm</u>
- <u>http://www.3kgroup.ee/en/mis-tahendab-wifi6-pikk-sumbol-ja-1024-qam/</u>
- <u>mcs-table-complete-v2_orig-1024x672.png (1024×672) (semfionetworks.com)</u>
- <u>https://www.argenox.com/library/bluetooth-classic/introduction-to-bluetooth-classic/</u>
- <u>https://microchipdeveloper.com/wireless:ble-link-layer-channels</u>
- <u>https://www.lairdconnect.com/rf-antennas/wifi-antennas/rubber-duckdipole-antennas/24-55-ghz-dipole-rf-antennas</u>
- <u>https://www.air802.com/fcc-rules-and-regulations.html</u>